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I EXECUTIVE SUNMARY

APPLI CATION OF SENSITIVITY VECTORS TO THE MEASUREMENT S

I MW MODELLING OF MAGNETOSTATIC FIELDS

OBJECTIVE

I The objective of this report is to develop the analytic techniques

requ ired for quantitative assessmen t of the sens itiv ity of magnetic f ie ld

measurements to quasi-static magnetic sources.

I APPROACH :
To accomp l ish th is objective we f irst use the concept of the grad ient 

S

I vec tor to def ine a “sen sitivity vector” for a given field measurement , and

I then relate this vector to the results obtained from the reciproci ty theore m

of electromagnetism. The derivations will then be extended from magnetic

[ di poles to higher order moments. Several non-linear cases will be examined ,

and techniques will be developed to account for the presence of noise.

I RESULTS S.

- 
In this repor t, the mathematical bas i s of sen s itiv ity vec tors has been

5 developed , with speci f ic  appl ica tion to the measurement and model l ing of -

magnetic fields. In the course of analyzing severa l examples , the fo l lo wing

questions were answered :

1 1. Given two magnetic field measurements , what criteria must be
satisf ied to al low determina tion of the two d ipole componen ts
consistent with that f ield?

~ 1 2. For a measurement of the vector magnetic field at a fixed
dis tance fr om a di pole source , what is the optimum magnet- 

5 ,

I ometer pos ition?

3. How do various configurations of single axis magnetometers
compare in terms of their ability to determine model parameters,I and how can this be assess ed quantitatively?

4. How can the presence of noise be included in such an analysis?

ii’
.- 

S S~ S ~~ s 
S ________
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5. What is the relationship of the sensitivity vector concept to 
S

the reciprocity theorem of electromagnetic fields? I
6. How can sensitivity vectors be used to study multipole models?

7. What is the interpretation of a sensitivity vector for a I
non-linear model?

8. What is the position dependence of a vector magnetometer, JS and how does it vary with position? 
S

9. Where can a magnetometer be placed relative to the model to
insure adequate signal to noise ratio?

Based on the ability of the sensitivity vector approach to answer these

questions quantitatively, it appears that thi s type of analysis may be

valuable for optimizing magnetometer array configurations. It is reassuring

that the results obtained in this report are consistent with both a modeller’s

intuition and more abstract mathematical analysis, particularly in that this 1
method can be readily extended to more complicated systems where intuition S

fails.

RECOt44ENDAT I ONS

Two specific recommendations follow from these results:

1) Interactive computer code should be developed to al low accurate S
and rapid analysis of magnetometer sensitivity and cbmparison of
magnetometer configurations. -

2) The sensitivity vector analysis should be extended to include the L *

magnetic field from electric current distributions , and possibly
the electric field from these currents.

S I

‘Ii
S.
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I 1. INTRODUCTION S

I The purpose of this report is to develop the analytic techniques re—

I 
quired for quantitative assessment of the sensitivity of magnetic field

measurements to quasi—static magnetic sources. To do this, we will first I

I use the concept of the gradient vector to define a “sensitivity vector”

for a given field measurement, and then relate this vector to the results

I obtained from the reciprocity theorem of electromagnetism. The deriva—
I

tions will then be extended from magnetic dipoles to higher order moments.

Several non—linear cases will be examined , and techniques will be deve-

loped to account for the presence of noise.

H ’
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-2- I .

[ II. THE CONCEPT OF A SENSITIVITY VECTOR 
S

Let us consider an obj ect that is a source of electric and magnetic

( fields . We are able to make electromagnet ic measurements at some distance

I 
from the object, and wish to use these measurements to obtain a mathema-

tical description of the fiel d sources. We can accomp lish this by

I defining a hypothet ical mo del for the sources and by adjusting various

model parameters until the fields produced by the model match the observed

[ ones. In practice , this process is complicated by linear depen den ce of

various model parameters for a part icular set of measurements, by the

I presence of noise in the measured dat a , and by the inability of the model

to explain certain details of the fields . The last one of these cotnpli—

S cations can be remedied only by altering the mo del and will not be consi—

de red in this report . The first  two , linear dependence and noise , can be

addressed using sensit ivit y vectors.
S 

*

1 We will t reat each measurement as a scalar . Measurement of a vector

magnetic field is equivalent to three single axis field measurements that

I determine three orthogonal vector comp~.nents. Other scalars that we S

I might measure are the componen t of the magnetic field parallel to  the
I earth ’s geoin~gnet ic field , 1earth , th e field magnitude 

~~~~~ 
or elect r ic

S [ ~~eart h I

field components E1 and magnitude 
~~~~~
. In general , we will make field

- L measurements F~ at points r~. An arbitrary number of different measure—
S + +r ments can be made at a single point , in wh ich case Fi F~ but r~ = r

j 
S

The process of modelling involves using these measurements to specify the

~ f parameters of a model which repr:duces the fields to the desired accuracy .

Suppose the model is located at r ’ and is specified by n model parameters

M~. As an example , a magnet ic dipole model at a known locat ion has three S

~~~~~~ a scalar quant it y as opposed to a vector quantity, not to be con—
fused with a total field magnetometer. S

. S

~ ~ 
—

____ 
___ /
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I ,
I ~

parameters 14
1 

= m , M2 
— m and m .  Addition of a quadrupole adds 

ifive more parameters to the model.

If ni measurements F
i 
are made to determine the n parameters ~~~ we

can say that the field or measurement space has n dimensions while the

source or model space has m dimensions. If the F’s and M’s are linearly 1
related , we can write

(:~
)- ( : :

1

~~~)(~~~~

) 

(2.1) J

which in matrix notation is

S (2.2 )
I

where is a n x 1 matrix ; is a m x 1 matrix, and I is the m x n trans-

fer matrix. If the F’s and M’s are not linearly related , as would be the 1
case if dipole location was a parameter in the model, we can linearize 

-

the equations about a point in model space. Non—linear examples will be

treated in a later section. 1
In particular, each element T

ij 
represents the value of the ith

S 

field measurement, i.e. F~. if only one model term M~ contributes, i.e. I
— 
~kf 

Thus a horizontal row of ~ corresponds to the field equation

for the complete model and describes how a particular measurement is I
aff cc ted by each sourc e term , while each column of describes how a par— -

ticular source term affects each of the measurements. If there are more -

measurements than model parameters, Eq. (2.1) will represent an over—
I

S 
determined set of equations. However , it is possible that a pair of model

• 
* 

-5 •S•
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5 . ~w ~
---~~-~~ ~~~~

__
~~~~~~~~~~~~~ S_ ~~~~~~~~~~~~~~~~ — — 5- -  5



IS.

I paramet ers may not be totally in dependent , result ing in coupled colusms

in ?. Then might be singular so that the set of equations will

I not have a unique solution for M given T and F. Simi larly, if two or

more field measurements are linearly related, two or more rows of would

be linearly dependent. This will pose a problem if there is an insuff 1—

I 
cient number of independent field measurements to solve Eq. (2.1) for the S

model parameters.

As a simple , two dimensional example of how a set of data relates to

a mode l, let the mode l be a magnetic dipole m located at a known po int r ’.

I We will atte1~Lpt to make measurements of B at points and in order

to determine the unknown dipole components m
~ 

an d my . The magnetic

S 
induction B is given by

~ 3~, . 
(;

~~~
_

S.~~~
,)  

~~~~~~~~~~~ 
- _______ (2.3)(r) 

— 
r r 

— 

S

I so that B sat isfies the equat ion S

I
i S

I B (r ) — 

ii E~ 
m(x — x ’) + m ( y  — y’] 

(x — x ’ ) — 
m (2. 4)

x 4,~ + +, 5
S I r — r  I f r — r ’1 3

S T For two B
~ 

measurements, we will have two simultaneous equat ions , linear

in a, that are of the form of Eq. (2 .4) .  We must determine the va lues of

- and r2 for which these two equations have a unique solut ion. As we S

~ ~~~~~~~~~

w:lII

8en81t

~~

hit i vectors will allow us to do this and also to identify

S 5 ~~~~~~~~~~~~~~~~~ 5~ S ~~~~~~

4

— — ~ S’ ~~~~~ -
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I

the optimum values of and I
We can define vector spaces for both the field measurements and the

model parameters, so that the elements of and become the components

of vectors and it As an aid in understanding the relationship of I
several measurements to the model, we can define a gradient operator in

model space by I

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~ (2.5)N 
~‘~l 

3M2 
3M
3 3M 

5 I

where i , j ,  k , a are the unit vectors in each direction in model space. I
In our two—dimensional example,

S VM 3!n~~~~
+ 3m J (2.6)

x y T

The sensitivity vector for measurement F. is defined by
1. 

U
— (2.7)

Ii
The interpretation of is straightforward : 

~~ 
indicates the direci ion 

-

of the change in model that produces the maximum change in the measure— I
ment F

1. Any change in that is perpendicular to will be undetected I
by F

i. Thus, the direction of the sensitivity vector can be used to 
-

~~ S

determine the source configuration for which F
1 has the maximum sensiti— I

S vity and the configuration which is not detected by F~. The magnitude of

the sensitivity vector is proportional to the maximum field produced at

S the measurement point by a given strength sour ce and can be used to

determine the relative sensitivities of several measurements.

For linear syst~~s, the components of the sensitivity vector for a

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5 S _ 5 _ 5 5-~~~~~~~
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I
particular measurement F1 

is in fact a row of ~ . To show this, we can

write ~q. (2.2) as I
F
1 

= ~ T1~M~ (2.8)

and Eq. (2.7)  as S

= 

~~~ 

(F.)e,,~ 
~~~ 

T11 M .) ~k (2 .9)

where ek is the k t h  unit vector.

Since the T . ar e independen t of N , this becomes
13

= T1~ -k (Mj )ê k Ij  k—i

(2.10) 1
T1~ dik

ék = 
~~~~~ 

T~1~
ê~

Thus is a vector in model space whose components are the ith row of ~ . I ~
Wh ile we have obtained this simple result  from an apparently circuitous

route , it provides us with a better understanding of the s ignificance of

each row: S1 and the  1th of ~ can be used to determine the sensi t ivi ty  of F~ J S
to changes in the model i~i , an d vectors can be plott ed to help visus Uze how

measurement sensit ivit y depends upon measuremen t locat ion. For non—linear I
systems, which can not be described using equations of the form of Eq.. (2.1)

and (2.2), we will show subsequently that the sensit ivity vectors are still

valid and can be readily determined analyt ically or numerically without J ~explicit ly lineariz ing the system of equat ions. 4

S.

_________ S ~~~~~~~~~~~~~~~~~~~~~~~~ S ~~~~~~~~~~~~~~~~ S
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1
I III. A TWO—DIi 1ENSIONAL DIPOLE MODEL 

+
In the simple two—dimensional model of a magnetic dipole m with coin—

ponents m
~ 

and m , the field in the x—direction is given by Eq. (2.4).

The sensitivity vector become s

~~~~ ~~~ 
= 

~m 
B ( )  (3.1)

or , after dropping the for convenience ,

~ ~~~ 
= 

I~~-~~’ I ~ 
~[3(x - xt)2 - - ~ tJ2] j

f (3.2)

+ 3(x - x ’)(y —

5 If the dipole is at the origin , r’ = 0 and

S 

~~~~ ~
) = _i. {(3x 2 - r 2 )i + 3xyj} (3.3)

r~ ~~

-

We can use Eq. (3.3) to calculate the sensitivity vectors for measurements

[ of B in the xy plane. It follows tha t S

5 5 
[ Sx (3~c

2 _
~~

2) S~~~~l2~ (3.4)

[ If all measurements are made at the same distance from origin then

— l a n d

Sx 
— 3x2 — 1 S~ — 3xy (3.5) 2

I The sensitivity vector components and magnitudes at sixteen points are

I 
listed in Table 3.1 and plotted In Figure 3.1. Several important features

are immediately obvious. At points A and E, a measurement of B detects

_ _ _ _ _ _ _  _ _ _ _  __  A~~~~~~~~~~~~~SS S ,

*~~~t,t ~4;*~, .4 S S

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
5 

5 

~~~ ~~—~~~r-” -
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~~~
TABLE 3.1

Sensitivity vectors at several points equidistant from a dipole. The data S

are plotted In Fig. 3.1.

x s s J~~I 
S

____ Y y
_ ___

I 
I

A ±1.00 2.00 0.00 2.00 1
_______ 0.00 

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  ______

B ±0.87 1.281 ±1.28]. 1.81 1
________ 0.49 _________ _________ ______

S C ±0.58 0.00 ±1.41 1.41 1
_______ 0.82 _________ _________ ______

D ±0.27 —0.78 ±0.78 1.10 1
_______ 0.96 _________ ______ 

J S

E 0.00 —1.00 0.00 1.00 .1
±1.00 

_ _ _ _ _ _ _ _ _ _  __________ _______ 1

11
S 5 

1

5~~S~~~~~~~~~~~~~ 
S S S S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - S 

S

a 
4

__ 
— 
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I S

I 
_ 5

I 
..
.• -?
‘ 

D~~~~. 
5

I S

5 )  Ai 
M x A’- ~~~

- -

BI 

_

S S 
-Figure 3 1 The sensitivity vectors for measurements of B at unit die

~ [ 
tance from a fixed magnetic dipole. The àoordinates of the points are

listed in Table 3.1.

Ii
—S — — I~~1 

55 — ___ •S~~~~~~ 
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S

. 

. I
fields from a but not from m . The sensitivity at A is twice tha t at E.

S X y
S 

At point C, in is detected but not m
~
. The sensitivity components S,~ and

Sy are equal to each other at point B and at point D, but the magnitude

of I is 1.81 at B and only 1.10 at D. I
If B

~ 
is to be measured at two locations for the purpose of deter— -

mining both in and m , the figure can be used to determine which coinbina— I
tions will not provide a solution for both m

~ 
and m~. If the two Bx

measurements are made at the two A points, or at the two E points, it

will not be possible to determine m because both sensitivity vectors are

parallel to the axis. Similarly a measurement at A and another at E

will not work Any two C measurements have parallel sensitivity vectors 1’

and are thus unsat isfactory. These are measurement combinations for

S 
which the matrix in Eq. (2.2) has no inverse.

The figure can also be used to determine which combinations provide S

a good determination of m
~ 
and m .  Two parallel vectors were shown to be Li

bad. Two perpendicular vectors may be good, but will two larger, non—

perpendicular vectors be better? A measure of the combined “information”

contained in two sensitivity vectors can be defined in terms of the 
S

magnitude of their cross—product

S IV — Ill x 12! (3.6)

If and 12 are parallel, V — 0. If 11 and 12 are perpendicular, V
will be large. In the two—dimensional example ]

S 

V . I s s — S 5 (3 7) -x1 y
2 y

1 x2

S J -
~~~~~~ 5 5~~~ 

.____J_.I_L___ —
~~~~~~~ —.w -_,I_.S_. - SS S_ SS.~~~ S_ S
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1 For two B measurements in adjacent quadrants, V — 3.28 , for two D measure-

ments , V — 1.22, implying that in the presence of noise, it would be

significantly better to measure B at adjacent B points than at adjacent

1 0 points. The values of V for pairs of measurement points in the first

S and second quadrants are listed in Table 3.2. As might be expected from

I the figure, adjacent D and E points have a low V value of 0.78. Note the

I 
cymmetry of the table across the heavy—lined boxes.

S 

As a second example , suppose we have a single vector magne tometer

I that measures g and B at a single point (x , y ) .  If the model is a dipole

located at the origin and lying in the x—y plane , the sensitivit y vector

S ( for each field component is given by

I I(B
~

) = —i-- 
[
~~x

2 — r2)i + (3xy)i]

( (3.8)
S 

I(B~ ) = —i— 
~(3xy)i + (3y 2 — r2)~j]

The cross product V becomes

V — ISx (B
x)Sy (B

y
)_ S

~
(B
~
)S
~

(B
~)I

S — —i-- I(3x~ — r2)(3v2 — r2) — (3xy)(3xy)I — —
~i 

(3.9)

I r r

~ ( This result indicates that the ability of a vector magnetometer to deter—
S S~~

mine the components of the dipole depends solely on the distance of the

[ magnetometer from the dipole, and not upon the relative orientation of

the dipole and the magnetometer. This is apparent in Fig. 3.2 , which

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
__ __ S

-~~~-~

1’ * S ;1~~~~~~
S

_______ /- /
_ 

~
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S TABLE 3.2 -
The quantity V — Is S — S S,~ computed for pairs of B

~ 
measurement 

5~~ 

S

points in the first and second quadrants for the sensitivity vectors 1
In Table 3.1.

A 

FIRST 

C

QUAD
~~~~D E 

SECOND QUADRANT 

B A 
S

A 0 2.56 2.82 1.56 0 1.56 2.82 2.56 0

I-’ B 2.56 0 1.80 2.00 1.28 0 1.80 3.28 2.56

C 2.82 1.80 0 1.10 1.41 1.10 0 1.80 2.82

Cfl ____ ____

0 1.56 2.00 1.10 0 0.78 1.22 1.10 0 1.56

E 0 1.28 1.41 0.78 0 0.78 1.41 1.28 0
S ______ _______ ________ ________ _________________ ________ _______ ________ ______ U

1)
TABLE 3.3

The coordinates and sensitivity vector components for B
~ 

and B~ measurements S

in the first quadrant. The data in Fig. 3.2. 1
Location Coordinates S S,,, Sr,,

A 1.00, 0.00 2.000 0 0 —1.000

B 0.92 , 0.38 1.561 1.062 1.062 —0 .560
C 0.71, 0.71 0.500 1.500 1.500 0.500

I - 0.38, 0.92 —0.560 1.062 1.062 1.561

E 0.00, 1.00 —1.000 0 0 2.000 t

~~~

5

~~

75

SS S
S S 

~~~~~~~~

_ _ _ _ _ _ _ _ _ _  

/
~~~~~~~~~~~~ ~~~~~ ____ 6
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S

( 1
Figure 3.2. The sensitivity vectors for measurements of B and B at unit -x y

distance from a fixed magnetic dipole. The coordinates of the points are S

listed in Table 3.2. 
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H

shows the B
~ 
and B~ sensitivity vectors for a vector magnetometer at a I

constant distance from the dipole. At locations A and E, the B
~ 
magneto— S

meter is sensitive only to m
~
, while the B~ magnetometer is sensitive

only to in . Thus the calculation of from I can be performed with equal ]
accuracy at all points on the circle in the figure. We will show later 

- 

S

that the location of a vector magnetometer becomes significant when using

a model with higher—order moments. 
-

i S

S 
I

~ ~
3

Ii

I

4 

/-S.- -



-15-

Li
I IV. THE INFORMATION MATRIX

I 
While the quantity V provides a measure of sensitivity and the

ability to invert the transfer matrix to determine the model parameters,

we need more complex models and thus must find a multidimensional equi-

valent of V. Extension of Eq. 3.5 to three dimensions is straightforward , S

( with V defined by the vector triple product

[ . (12 x 13)=12 
. (I3

x Il)— 1 3 (I~~x I~) (4.1)

Note that V is equal to the volume in model space enclosed by the three sensitivity

vectors, If any two of the vectors are parallel, V = 0. We see that for 
S

f a three parameter model, V measures how well the sensitivity vectors for

a set of measurements “span” model space. In the absence of noise or

computational inaccuracy, an n parameter model can ideally be specified

using n measurements that have orthogonal sensitivity vectors spanning S

model space. In the three—dimensional case, three measurements are re—

[ quired but additional measurements may increase V either because some of S

the measurements may have low sensitivity or non—orthogonal sensitivity

~ 
( vectors.

S 

In order to extend V to more than three dimensions, we need to intro— 
S

I duce the information matrix. The ~th component of the sensitivity vector 
S

S 

~ 
[ for the ith measurement is and is given by Eq. (2.10) 1

S (I~)~ — ~~~ (4.2)

so we can rewrite Eq. (2.8) as

— E T
ij M~ — E(I~)~ M~ — (4.3)

S—S 

i

S,

~

S
,S 

~~~~~~~~~~~~~~ v.,5r,l 
— — ________________ 

__ 
/~~~

-~~~~~ — — ~~~~~5
5 

-
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~~~~

where is the t ranspose of the column mat rix equivalen t to We 1
can multiply Eq. (4.3) on the left by to obtain , for an in dimensional

model ,
(4 .4 )

i i  i i~~~ i5 
]

where ~~~ . is termed the “information matrix” and is an m x m squa re , symmet ric S

mat rix particula r to the ith measu rement. If there are n measurements , I
the n equat ions of this form can be summed to y ield S

~~~ ~~
‘
i 

= ~~~~~ = 

[~~~ 
~i] 

~ (4.5) J
i—l 1—1 i—i

which can be solved fo r

I n  1-1 n
= 

~~~~ ~i] ~~~ ~i Fi = ~~~~~ 

~~~ ~i 
F1 (4.6)

i—i i=l 1=1 U
with ~ being the m x m information matrix for the entire set of measure—

ments. Eq uation (4.6) represents a solution to the “inverse problem” in 
-

which field dat a are used to determine certain source parameters. In the

equation, the n Fi will be known, since these are the field measu remen ts , 1
S 

and the and can be calculated for the chosen model. However , if

does not have an inverse, we cannot determine i~.

As an example of this , let us return to the two-dimensional dipole

example in Section 3. If measurements are made at points A and E , the j
S 

sensitivity vectors and information matrices will be

Li

S 5 5 5 4  
5 

~~~~~~~~~~~~~~~~~~~~~~~~

___________ — - 

4 

_
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i
~~

I ~
1 T (2.o\(2.o 0.0) (4.0 0.0
1 R — S S  — I  JI \o.oJ \o.o 0.0

I S2 
— ( :::) 1(

2 — C:: :::) (4.7)

/ \5.0 0.0
R — R  + R  — SJ 1 2 0.0 0.0

( 
Because has a zero determinant, it has no inverse and we can not deter-

mine both dipole components. This is as expected , since for these two

I measurements, V — 0.

We can make the connection between the determinant of and V by

writing

- (:~:) ~2 
(:::) 

(4.8)

I and computing detJ~~I

detl~ J — (S21S12 — S11S22) 2 — V 2 (4.9)

to find that our n—dimensional V is simply

ii 
½V — (deeI~~J) (4.10)

We now see tha t V , which provides a measure of how well a set of measure— S

I ments span the model space, is also a measure of how readily the informa— S
~ ~

,. tion matrix can be inverted as required to solve the inverse problem. Given

— ~~

5 5~~~~~~~~~~~~~~~~~
j

~~~~~~~~~ 5~~~~~~~~~ s~~~~~.

a 

~ 4 AS S ~~~ •S S~~~ S

~~~~~~~~ —~~~ww~~~~-u_.. — 
—

~~~~ 
- 

- ~~~
-
~~~~~~~~~~~~~~~~~~~~ ---- - —~ —- S
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1

this introduction to 
~~~

.,  V , and i~, we are now prepared to work several I
examples.

4.1. The Two—Dimensional Dipole

Equation 4 , 54 and the data listed in Table 3.1 can be used to :ompute

the information matrix for each measurement in quadrants I and II in Fig.

3.1 , and the information matrix for all pairs of measurements. I
The results , listed in Table 4.1 , are consistent with Table 3. 2 and show -

~~

tha t certain p .iirs such as A l—A2 , Al—El and Cl—C 2 have a singular i n f o r —

‘nation matrix.  The pair Bl— B2 had the largest value V in Table 3.2 and J
is now seen to have a diagonal information matrix with large , equal

elgenvalues. In this case , can be wr i t ten  as

(4.11)

where A is the eigenvalue and is the identi ty matr ix .  Equation 4.6

reduces to S

n

>1 = ~~
l
~~~

S
~i 

F~ (4 .12) 5 S

S . thThe 
~ component of ~i becomes

- ~~ ~~~(S . ) .  Fi = A~~ ~~~T1~ 
F
1 (4.13) 

ii
We recognize the summation as a matrix multiplication and write

= A
1 
~T 

~ (4. 14)

t hus for properly chosen measurement points, solu tion of the inverse -

problem reduces to a trivial matrix multiplication using the transpose of -

S 

L i ,e original matr ix .  This is the mo t ivation for finding sets of U
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1~
’ 

~measurement points where the sensitivity vectors are orthonormal.5 As an example of this , let us assume that we can make àne B~ 
f ield 1

measurement at the arbitrary point (0.75 , 0.66) ,  between poii~ts B and C in -
~

-
Fig. 3.1, and that we want to find the second point so that R i s  diagonal

has equal eigenvalues. U:ing Eq. (3.3) , we f i nd that and will

1.49 j

~~ 1 /2x2 - y2\ /A\
S~ = —s ( 1 ( J 5 

(4.15)
r \3xy / \B/

S The information matrix for these two measurements is J S

~ 1 / (2x
2 - y 2 ) 2 + 0.48r10 3xy(2x2 - y2) + 1.03r 10\ 1!

r~ 1 J (4.16)
r 

\3xy(2x2 — y2) + l.03r ’0 ( 3xy) 2 + 2.22r 10 
/

Rathe r than use Eq. (4.16) to find the values of x and y where R is di— S

agonal and has equal eigenvalu es , it is more convenient to determine the S

poin ts where
S 

— I~ 2i and 
~l ~2 

= 0 (4.16)

S 

From Eqs. (4.15), it follows that Eq. (4.16) is satisfied by

— ±1.49 x 0.69 ; (4.17)

Visual examination of Fig. 3.1 shows that the points with this sensitivity

will be located approximately as follows 
H

Quadrants I & III between U & E, r < 1
(4.18)

Quadrants II & IV between A & B , r > 1

5— - - p ~ ~~~~ 5 5 ~~5 ~~~~~S5 S S S . S S  — 

/
———~~w~- — - —-- ~~- — 5- - 5
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(
We can now proceed to calculate the locations exactly using Eqs. (4.15)

I and (4.17)

L —fr-- (2x~ — y2) = ± 1.49

(4.19)

1 —— g - (3xy) = + 0.69

I
The most direct method of solving these simultaneous, non—linear equations

J is to solve first for r and then f or x and y, which gives the values

r — 1.057 r 0.856

I x - ± 1.013 x - ± 0.125 (4.20)

( 
y~~~~~O.299 y — t 0.847

These data are plotted in Fig. 4.1. The significance of this calculation 
S

is that the results were predicted approximately using Fig. 3.1. Thus one -

strength of sensitivity vectors is their suitability visualizing measure—

ment sensitivity. 
S

4.2 The Single Vector Magnetometer 
S

( 
We can now use the information matrix to examine the vector magnetometer

example discussed in Section 3. If the magnetometer measures B
~ 
and B at a

S point (x, y), Eqs. (3.8) can be used to compute the information matrices for

measurements of B and B 1I x y

R~~— S ~~S~

1 f (3x2 — r2)2 3xy(3x2 — r2) \ 4RB — —  I 1 (4.21) jI x r 10 \ 3xy(3x2 — r2) (3~~~) 2 / 5
5

S — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 5 55 5 5~~~~~~~_

.5

I 4

4

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~—~~~~~~
5- — -~~~~~~~~~~ -- - 7 4
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S Fig. 4.1. Four locations where the B sensitivity vector (solid) is per—

- S  
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- )
(3xy)2 3xy (3y2 r2)

= (4 21 cont’d)
y r10 \ 3xy (3y2 — r2) (3y2 — r2)2 4

The information matrix for a vector magnetometer is given by

I S

R
~~
= R

~ 
+ R B

/ 4 ~ 2 + Y 2 3xy \
1 ( 1 (4.22)
8 1 2 2 ’I r \ 3xy x

It follows immediately that

f det IR
~~

= -4i

and , consistent with the previous result in section III,

V — [det IRI]
½ 

= (4.23)(
I Since V is determined by r but is independent of x and y, this shows that

there is no optimum position for the vector magnetometer for a fixed die—

I tance from the dipole. Equation (4.22) also shows that R is diagonal for

S measurements on either the x or y axes.

S In a later section, we will extend this example to intlude different
noise in the x and y axis magnetometers.

4.3 Multiple Bx and B Magnetoineters

The analysis techniques developed in the preceeding sections can be

applied to the row of either 11 or 11 B~, single—axis ~tagnetometers shown

In Fig. 4.2. The sensitivity vectors and information matrices for each mag—

S netometer are listed in Tab les 4.2 and 4.3 , with the source assumed to be

- t El 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  

a

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

S 

~~~~~~ 5_-~~~~~~~~-—

‘.1 
- - ~~~~~~ ~
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- -J~~~~ • ~~~~~~~~~ 
-

~~~ 
- S~~~~~~_ ~~~~~~~~~ 

~~ 
S
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I
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Fig. 4.2. A row of B
~ 

or B
7 

magnetometers near a magnetic dipole .

t.1
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5

I TABLE 4.2

Sensitivity vectors and information matrices for the line of B~ 
magneto—

meters in Figure 4.2. S,~ (3x2 — r2)r 5, S~ — 3xy r 5

S I Position Coordinates r S~ S~ R

I f o.ooi. o.ooo \
A —4. 0 , 1.0 4.12 0.026 —0 .010 0.028 ( J

I \o.000 0.000 /

/ 0.003 —0 .002 \
B —3.0 , 1.0 3.16 0.054 —0 .028 0.061 (

J \—o.oo2 0.001

/ 0.016 —0.013

I C —2.0 , 1.0 2.24 0.125 —0.1 07 0.165
\-o.o13 0.011

I f 0.031 —0 .094
1.O , 1.0 1.41 0.177 O.530 0.559

\—o.o94 0.281

S f 0.082 0.246 \
I E —0.5 , 1 1.12 —0.286 —0 .859 0.905 

~\ 0.246 0.738 /( / 1.000 0.000
F 0.0 , 1.0 1.0 —1.000 0 1.000 1 5

I \ 0.000 0.000

1 0.082 ~0.246
G 0.5 , 1.0 1.12 —0.286 0.859 0.905 1

\ 0.246 0.738

0.031 0.094
1.0 , 1.0 1.41 0.177 0.530 0.559 LI \ 0.094 0.281

/ 0.016 0.013
I 2.0 , 1.0 2.24 0.125 0.107 0.165

\ 0.013 0.011

I . / 0.003 0.002
S 3.0 , 1.0 3.16 0.054 0.028 0.061 (

~

S.. 

\ 0.002 0.001

I / 0.001 0.000
K 4.0 , 1.0 4.12 0.026 0.010 0.028 1\ 0.000 0.000

- - - 
~~~~~~~~~~~~ S 5~~~~~~~~5~~~~~~’ . •  5 

S S  
A

‘
I S~~~ ,~~~~’* . 

-
~~

S /~___  - - 1 ’  ~~~~~~~~~~~~~~~ ~~~~~~~~~~ S S S
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TABLE 4.3 1

Sensitivity vectors and information matrices for the line of B~ magnetomers I
in Figure 4.2. Sx 

— 3xy r~
5, S~, — (3y2 —r 2 )r 5.

- r S s 1 stPosition ~..oordinates x y S

/o.ooo o.ooo\
A —4.0 , 1.0 4.12 —0 .010 —0.0 12 0.015 (

\o.000 0.000/

/0.001 0.OOl\ 
-

B —3.0 , 1.0 3.16 —0.028 —0.022 0.036 SS

\o.ooi. 0.000/ J
/0.011 0.004 

-

C —2.0 , 1.0 2.24 —0 . 107 —0.0 36 0.113
\o.oo4 0.001

/ 0.281 —0.094\
u —1.0 , 1.0 1.41 —0.530 0.177 0.559 1 J

\.-o.094 0.031/

/ 0.738 —0.861
E —0.5 , 1.0 1.12 —0.859 1.002 1.319 (

\—o.86l 1.004

/ 0.000 o.ooo\ 5 5 5
F 0. 0 , 1.0 1.0 0 2.000 2.000 ( I

\ 0 000 4.000/

/0.738 0.86l\
C 0.5 , 1.0 1.12 0.859 1.002 1.319 I I

S \o.86i. 1.004/

/0.281 0.094\
H 1.0 , 1.0 1.41 0.530 0.177 0.559 ( J

\o.o94 0.031/ ii
/ 0.011 —0.004\

1 2.0 , 1.0 2.24 0.107 —0.036 0.113 1 I
S \—o.oo4 0.001/ 1’

/ 0.001 —o.ooi\
S J 3.0 , 1.0 3.16 0.028 —0.022 0.036 (

S 
5 5 \—o.ooi 0.000/ 

S

/ 0.000 0.000
5 

‘ - s. K 4.0 , 1.0 4.12 0.010 —0.012 0.015 (
S 

,
,~ \ 0.000 0.000

S 

--5-  
. 

. ; S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 

5 5 5  S 5 S~~~5 S S S S  

. 

5 -  -~~~~ 

~~~~~~ S
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5 

5

- a dipole located at the origin. The sensitivity vectors are plotted in

I Figs . 4.3 and 4.4 both as scalar functions of x and as vectors at each

measurement point.

The plots of S and S versus x in Fig. 4.3 can be seen to correspond

I
to plots of the B field of the mx and m dipole components, respectively.

This will be explained in terms of the reciprocity theorem in Section 6.

I Examination of the S and S curves can be used to choose optimum loca— 
S

tions for a B
~ 
magnetometer. For example B measured at B and C would be

I good for determining m , but B at F would be more sensitive to m
~
.

I 
Choice of measurement locations is simplified by the vector plot in the

lower half of the figure. The three largest vectors are at E, F, and C

f and appear to span the dipole space relatively well. Addition of points

i.) and H will make only small improvements, since these vectors are signi—

I ficantly smaller than the parallel vectors at G and E, respectively. S

The plots in Fig. 4.4 show that the sensitivity of B to m is the

L 
y x

same as that of B to m , but B is twice as sensitive to in as B is to S

S K y y y x

I m~. Thus , for a row of magnetometers displaced from the source in y J
S direction, measurements of B

7 
are superior to measurements of B

~
. The -

I vector plot in Fig. 4.4 shows that B
y measurements at locations E and C

S have large, nearly perpendicular sensitivity vectors. Both figures show

that there is a serious loss in sensitivity for measurement locations for

which x > 2y.

Given the sensitivity vector data and information matrices listed in

~ f Tables 4.2 and 4.3, we can calculate the quantity V for various combina—

tions of B
~ 

and B
7 
measurements, as listed in Table 4.4. Several

r important points become apparent in the table. A vector magnetometer at

(0.0, 1.0) has a V of 2.0, greater than any of the combinations of 2 to 11

- 

p5 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 
~
p ,  a 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
p 

‘ 
55

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
5~~ S 

~~~~~ 5 5
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Fig. 4.3 (Upper). The quantities S,~ and S~ plotted as a func tion of x for

the B
~ 
magnetometers in Fig. 4.2. (Lower). A vector plot of S for the

same data. S
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5

Fig. 4.4 (Upper). The quantities S and S plotted as a function of x ‘5

I for the B
7 
magnetometers in Fig. 4.2. (Lower). A vector plot of S for

the same data.
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I
TABLE 4.4 I ‘1

The quantity V for various combinations of B~ 
and B

7 
magnetometers. The

locations are shown in Fig. 4.2. The mean distance of the measurements

to the dipole is listed under r.

r 
~~~ 

-

~~ L~~~IJ -

— B B B & B
Locations r x y x y Plot No.

A 4.12 0 0 0

B 3.16 0 0 0.002 _1

C 2.24 0 0 0.016 1

1.0 0 0 2.000 4

B , G 1.12 0.492 1.722 2.390 5 1
E , F , G 1.08 1.311 2.978 4.445 6 -

~
-

i S
D , F , H 1.27 0.773 1.511 2.740 7 

p

J , E , F , G , H 1.21 1.581 3.517 5.144 8 
5 5

F, G 1.06 0.859 1.718 3.174 9

F, G, H 1.18 1.054 2.054 3.502 10 Li

F, G, H, I, J, K 2.18 1.072 2.071 3.531 11 -

ALL 11 2.28 .1.616 3.538 5.203 12

I

S 
B, I.), I 2.27 0.088 0.006 0.281 13

C, E, H 1.59 0.161 0.696 1.485 14

C, D, I 1.96 0.101 0.034 0.296 15 1

j
-5  _ _

-

____________ 

-

_ _ _ _  

5
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5

- B magnetometers. B measurements generally have a larger V than B~ mea—

surements, which must result from the fact that the row of magnetometers

is displaced from the dipole in the y direction. Identification of the

I trends in the table can be simplified in Fig. 4.5 by plotting V for each type of

measurement (B , B , or B) as a function of the mean distance from the
7 x y

dipole to the measurement locations. In order to separate an increase in 
S

V due to a decrease in mean distance from one due to an increase in the

number of magnetometers, the data are sorted by number of signals. For

f example, two B,~ measurements, two By measurements , 
and one B measurement

each have two signals. The graph shows several trends. For any series

of measurements , V decreases with increasing mean range; the line through

points 2v, 3v, and 4v has a slope of —6 , consistent with Eq. 4.23 for a

S single vector magnetometer. Except at large mean distances, V3 
> V~ . S

I Whether this is true in general may depend on the choice of measureme:t

locations. The graph also shows tha t high V can be obtained at large mean

( distances by using a large number of measurements. However, V is 5.144

for five B measurementsclose to the dipole, whereas adding the six more

L distant ones increases V only by 1%. For the 3 closest B measurements, V

[ equals 4.445, only 142 below the value for 5 vector measurements.
S 

The E and C sensitivity vectors for a B measurement were shown to( be nearly perpendicular in Fig. 4.4. A simple quadradic equation can be

[ solved to Show that the B~ vectors will be perpendicular for two pairs of

S 
measurement locations: x = ± O.56y and x — ± 3.56 y. At the first, which I[ is close enough to be useful, R is diagonal with equal eigenvalues and

V 1.44. This is plotted in Fig. 4.5 as point 16y. However, the choice

[ of this pair of locations over E and C would depend on the relative impor—
‘I,

tance of R being diagonal versus V being 20% larger. The fact that B
y

5 - 5  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- ~~ 55
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\2 V

0.2
14X 

S

S 15Y 

1)
S 15X0.I I I I I I I I I I I I I S

1.0 1.2 1.4 1.6 1.8 2.0 2.2 
5.

MEAN DISTANCE

I
Fig. 4.5. The quantity V plotted as a function of mean distance r from the 

- 

5

data in Table 4.4. The lines connect sets of measurements using the same :1

type and number of magnetometers. The plot numbers are listed in Table -

9.
4.4;  x , y ,  and v stand for B

~
, B~ and B measurements. See the text for -

points 16y and 17v.
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measurements F and C (point 9y) and measurements E and G (point 5y) have

r almost the same V while having x—direction separations of 0.5 and 1.0,

respectively , indicates that the apparent linear relation between log V

S 
j  and log ~ doesn’t necessarily hold for changes in measurement configura-

tion in the near field region.

- In Fig. 4.5 , the points Sv , 9v , and l7v are for  two vector magneto—

meters, with l7v corresponding to both magnetometers located at the same

point (0.0 , 1 . 0 ) , for a V of 4.0. This indicates that while a large V is 
S

I desired, it is possible to artificially enlarge V by repeat ing a measure-

ment twice. This could be avoided by dividing V by the number of measure—

1 ments taken, which would show B and B at position F to have a V/n of 1.0x y
and B

y 
at positions E, F and G to have a V/n of 0.99.

4.4 The Effects of Noise

f In the preceding sections, we analyzed several different examples and

stud ied the variation in V as a function of distance. If the measurements

are affected by either external or instrument noise, then the signal at

large distances will be masked by noise, so that such a measuremen t can not

contribute fully to the modelling process. This e f fec t  can be accounted

f for by defining the total information matrix by

- [ TOT = ~ w~ (4 .24)

r where w~ is a weighting funct ion that is zero for signals buried in noise

and 1 for clean signals. For example, we can define a suitable w by

si — n
iwi 

= 
S
i 

— 1 — for < S
i 

(4.25)

w 0 for n > s
i i i

I where s~ and n~ are the signal and noise amplitude for the i
th

I’ 
_ _ _ _ _  _ _ _

S.

SSZ 
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measurement. Since the magnitude of the signal is determined by both the

strl ngth of the source and the sensitivity vector for that measurement , we 
I

can replace n
i/si by IN 1 I/IS~I, where is a noise sensitivity vector

that contains the relative strength of the noise source to the signal

source. The use of ( s 1 j is reasonable, since we showed previously that 
S

the magnitude of the sensitivity vector indicated the maximum signal from -

a dipole with unknown orientation. From Eq. (4.22) , we find that, for a

single vector magnetometer

INB I :/  I N
B I 51

- - 

1S 3 1 
RB + - 

S
3 1 

R
3 

(4 .26)

S 

It fo llows from Eq. (3.8) that 511

(SB 
— ~~ ~~4x~ + y2 (SB t —4-- + 4y2 (4 .27)  j

Suppose that, for a given dipolar source, the signal to noise ratio for a 
S

measurement of B
x on the y axis is unity for y 2.0. At that point

-9. 9.
IdB I (N B I 

+ -~1 — 
X 

— 
x so (N3 I = 0.125 (4.28)

~ x I
If we assume that ~N3 I — (NB (, we can calculate how V for the vector mea—y x j

S 

surement depends on distance along the y axis. The results, plotted in

Fig. 4.6, show that at y 1.0, V corrected for noise is 10% smaller than

the original value. At y 1.5, V is 32% smaller. At y — 0.5, the correc— I
5 

tion is only 1%.

‘S S
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As a final example of the addition of noise to the analysis, we

( stated earlier that V for a single vector magnetometer depended only on

distance from the dipole. If the noise field is not the same for both S

L I B and B , i.e. J N 5 > N~ ( ,  then there will be an optimum magnetometer

location . Continuin g the p revious exam ple , let us assume that N3 ( 0.250

and ( N B ! = 0.125. On the x—axis, the total information matrix is given by

I 
(4(l_

_
~~~x

3) 0

- 
~ = — L  (4.29)

x6 \ 0 (1- N3~~~ )J

while that on the y—axis is

((l_ N
B Y3) 0

I (4.30)
Y 6

\ 

N
B J S

0 4( 1— _f- y 3)

( S

At the points (1, 0) and (0 , 1), V has the values 1.75 and 1.68 , respec—

tively, compared to 1.81 when both noise sensitivities were 0.125. This

is consistent with Fig. 3.2, since the larger noise in B
~ 

can be partially 
S

offset by measuring B~ where it is the largest —— i.e. on the x—axis.
If the weighted information matrix is used in analyzing the row of

magnetometers, the curves in Fig. 4.5 will be seen to fall off more[ quickly with mean distance. A detailed analyii’ of various magnetometer

i r configurations will require realistic estimates of signal and noise
+

strengths, to insure that IN~I is specified correctly. Comparison of

S -!~ 54~~ 5
5 S
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Fig. 4.6. The quantity V plotted versus y for a vector magnetometer on the

y axis. The dashed line uses the noise—weighted ft while the solid one

S 

does not. I

- - ~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

S --  

~

—
:
- ---:

? ~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~

“a- 
~~~~~~~~~~~~~~~~~~~ ~ 

I.

— 5.- ____ —
• 

“T~~~~

1

~~
’

~~ 
~~~ ~~~~~~~~~~~ r.~~~’ r  ~~~~ -5~ 

____



I -37-

expected performance with that observed from actual field measurements

I migh t allow the use of an empirical noise weighting function, rather than

S given by Eq. (4.25).  Thus we have developed techniques for using sensi—

L I tivity vectors for analyzing and comparing various magnetometer configura—

I 
tions, both in the ideal noise—free case, and when noise limits the

distance at which measurements can be made. Our next step is to relate

this work to the reciprocity theorem prior to beginning quadrupole

analysis.

I
1

I I
[

I l . I
5 r
~ I
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V. QUSAD RUPOLES AN]) HIGHER MOMENTS

I The preceeding analysis used the sensitivity vector obtained by com-

puting the gradient of the field with respect to the model parameters. 
S

I The ith measurement was shown to be given by

I F~~=~~~ ~ (5.1)

1~ For a di pole model , vector notat ion let s us wr ite this as

F1 = S 1 • M (5.2)

However , Figures 4.3 and 4.4 showed that the components of these sensiti—

I vity vectors have the same spatial dependence as the field of a dipole.

- This and Eq. (5.2) are simply demonstrations of the reciprocity theorem ,

- which will be shown to provide the basis for interpreting the sensitivity

I 
of a magnetometer to magnetic quadrupoles and higher order moments.

S 
(S 5.1 The Sensitivity of a ~Ia&netometer to a Distributed Magnetization

We have considered the magnetic field produced by a point magnetic

5 dipole 
-

I B(;) - ~~ 

~~~~~~~~~~~ 

~; - ‘) 
- 

.9. 
~
+, 3)  

(5.3)
IL (r — r ( Ir — r I

[ For a source whi:h is a distributed magnetization, we can identify the S

S 
magnetization M(r) as a magnetic dipole density and integrate Eq. (5.3)

over the source volume to obtain

I 
~~~~~~~~~ 

_
u

o f [

~~~~(?) ~ ‘)( ‘) 
- ~~~~~~~~~~~ ] cI~~r ’ 5.4)

f r — r ’( J r — r ’( S

_ _  __ 
A

S 
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Alternatively, the field can be determined by noting that 1

B(~) = —Vl1l(r) (5.5)

with ~ being described by the traceless tensor multipole expansion listed

in Table 5.1. The separation of the source into dipole , quadrupole and I
higher moments is ideal for modelling , and we thus see the need for expres-

sions describing the sensitivity vectors that relate, a field measurement

to each multipole moment. Based on our previous discussion, we could

compute the gradient of each potential term in Table 5.1 to obtain the S
+ .. S

corresponding contribution to B, and then compute the gradient of each B with S

respect to the moment to obtain the sensitivity vector. Rather than
4.

do this, we will use the magnetic vector potential A to derive an ex—

pression equivalent to Eq. (5.4) This expression will help explain the

physical significance of sensitivity vectors.

If we represent a single axis magnetometer by a small pick—up loop, then ]
the magnetometer output will be proportional to the flux ~ coupling the -‘ 

S

magnetometer, given by

-p -
S 

~ —J B(r)  da (5.6)

where d~ is the normal to an element of surface bounded by the loop.
+

Because V • B — 0 , we can write S

+ 9.~~~
B(r) = V x A(r) (5.7) J

so that -~~

+ 1
• _fv x A(r) . da (5.8)

Stoke’s Theorem can be used to convert this to the line integral I
S 

— JA( ) . (5.9)

where is a length element of the pick—up coil system. We now need to

S_ _ S -_-_ ~ 5 5 5  -s’ ‘‘ -~j--. .
__

_~~~ __555555 ,5555 , ~~ _ 5 5 5 5 5  ~~~~ - -
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- TABLE 5.1

S 

The Traceless Tensor Multipole Expansion for a Distributed Magnetization

S 
•( r) = ~~~~ + ~~~~~~~~~~~~ 

+ . . .
H i—i i—l j — l

AS)IPOLE

I •1. — = j M ( 1)d 3r ’

QUADRUPOLE

( 
— 

1 3x2 — r 2 

~xx = 
f[2x

’
~
S1
~~
(;’) — 4 . 

1 4(P )]  d 3r ’

~yy 
~~~ 3y2 - r 2 

Qyy = 
f[2y

’M
y(P) 

- 4 . ~(~‘)] d 3r ’

I
(5  

— 
3z2 — r ~ — f[2z’M (P) — 2. ~ . 14(P )] d 3r ’

1 — 
yx 

— 
~~~~~ ~xy 

— 
f[x

’M
y
(P) — 

Y
’M

~~~
(P

)] 
d 3r ’

yz ~zy — 
~~~~~~ ~yz 

= 

~zy ‘ [Y
t151

5~~~’) — z ’I51~~~~~)J d 3r ’

I
~ f ~xz — ‘

~zy 
— 

~xz ~~~ 
— 
,f{x

’M (P) — Z ’M
~~

(P )] d r ’

~1
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+ +

relate A to 11 , and do this by starting with Maxwell’s fourth equation

V x S = j j V x M  (5.10) 1
which becomes S

+ +

V x (V x A) — ~i (V x M) (5.11)

+ 

0 

+ +
But the vector identity V x (V x A) — V (V A) — V

2A lets us write -

+ +
V 2A = V(V . A) — p (V x f4) (5.12)

The Coulomb gauge can be chosen to set the first term on the right to

zero, leaving 
-

V2A(~) = -~i(V x 
~~(~~~

) )  (5.13) .1
which is Poisson’s equation. In cartesian coordinates , the so lut ion  is

) ~o f V ’
x~~~(P) d 3:~ (5.14)

The vector identity VV x U — V x (VU ) — VV x U can be used to rewrite this
1~as

A ( )  — .2~ fVt x 

~~~ 
d 3r — ~~ f v~( 1 )  x r1( ’)d ~ r (5.15)

V V 

I
The first volume integral can be converted into a surface integral that 

-~~

S vanishes for any bounded magnetization distribution. Therefore

~a x v ’  

( 

‘ 

)d

3r (5.16) 

5S 

u S  
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j Substituting this into Eq. (5.9), we f ind

I — ~
s
~.Jf[i~

i(P ) x ~ 1 ) d 3r
I] 

(5.17)

The terms of the scalar triple product can be permuted and the order of

1 integration reversed to obtain

• 
= ~~ 

f [v ’ xJ 
~~~ ] 

M(P ) d 3r ’ (5.18)

Recall that a test current I flowing in the pick—up coil has a vector

I 
potential 

5

A (P)  ~~~~~~~~~~~~~~ (5.19)

associated with a magnetic field 
S

- B (P ) = V ’ x A (P ) (5.20)

[ With this identification, we may write Eq. (5.18) as ~.
S S

I ~~~ f B (~ ’ )  . M(P ) d 3r ’ (5.21)
v

-
5 - 

1. Thus we see that for an arbitrary pick—up loop configuration , the contri—

I bution to the magnetometer output from a source element at can be 
~S

determined from the magnetic field B produced at r’ by passing a testp

current I through the pick—up coil. The reversal of the order of inte—p

gration prior to Eq. (5.18) and the identification of the line integral

S in Eq. (5.19) are simply a statement of the electromagnetic reciprocity S

1 
_ _ _ _ _ _  _ _  -- _

__ _ _ _ _ _ _  

8
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theorem. Comparison of Eqs. (5.2) and (5.21) results in this identifica-

tion: S I
At a given source location, the sensitivity vector for a
single axis magnetometer is equivalent to the magnetic
field produced at that location by passing a unit test
current through the magnetometer pick—up coil.

Since the magnetometers used in Fig. 4.3 and 4.4 were assumed to be small, 
IS

it is correct that their field B would be dipolar. Interpretation of

Fig. 3.1 is also straightforward. The sensitivity vector for each Bx 
mag-

netometer location corresponds to the magnetic field produced at the 
S

origin by passing a test current through the magnetometer.
I

Equation (5.21), with its simple interpretation , provides the key for

understanding the sensitivity to higher moments: the integrand -

+ 4. ~~~~~~~ -

B ( r ’) M( r ’) can be broken down into various multipole terms using a

Taylor’s expansion of B(i~’) and a multipole expansion of M(P), so that

B represents the sensitivity to the dipole component m , each spatial gra—

S dient of B~, represents the sensitivity to the corresponding quadrupole

moments and so forth. If the magnetometer is a simple scalar instrument, -.

+
B can be obtained from Eq. (2.3), where m~ is the unit dipole moment

produced by I~,• For a B
x magnetometer, m~ = i. For a gradient magneto— ] S

meter, B() will be characteristic of a magnetic quadrupole, but the 
S

sensitivity of this instrument to a magnetic dipole will still be given by j
+ + 

S

B ~~m.
S p

Based on this discussion, we will proceed to determine the sensitivity

S of a vector magnetometer to a dipole—plus—quadrupole source. Calculation
+

of the components of B~ is straightforward . There are nine gradients of
+
B~ that can be written as a gradient tensor S

-~~~ 
5— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S — .L-.. ~~~~~ 

S . ‘ c ~
-,.
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1 S S

/3B 3B

I /3x ~x

[ 
(
~~~~x (5.22)

I
- \3z 3z 3z/

I.
Just as the quadrupole tensor in Table 5.1 is traceless and symmetric , the

condition that V x B is zero in a current—free region implies that the

gradient tensor for B is symmetric , so that we can wr ite the B~ gradient

tensor as

- aB 3B
S I_-i ___1 _...z \

/ 3x ~x 3x

/ 3B as 3B
( 5 2 3)

H :: ::
[ 

The condition that V B~ — 0 implies that this tensor is also traceli ss.

We can therefore omit both 3B /az and from our discussion , since they

can be derived from the other two terms of each trace.

I -~~he following pairs of quantities will be required for the sensitivity

S analysis

f 1: B ,x X

DIPOLE 2 : B , m (5 .24)y y
3: B , m

-—-s —5- -5- 
5
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(5.24 cont ’d) 3B
4: -~--~~,Q~~ I
5: ~~~~~~~~ I

QUAD RUPOLE 6: 
‘ ~xy

as
7: -

8: ~ Q 
j S

The terms on the right correspond to the eight axes in model space, while

the quantities on the left correspond to the eight components of each

S sensitivity vector. If each set of eight quantities is thought of as a

(1 x 8) matrix or an B—vector, then the magnetometer output corresponds to the

inner (scalar) product of these two matrices (vectors). In computing the S
4. +

gradients of B using Eq. (2.3), it is important to note that r’ is the -

location of the pick—up coil and is the location of the model, and the gra—

dients are computed with respect to the source location. The sign of

(or m )  can be chosen to insure, for example, that Q~ as shown in Fig. S

5.1 will produce a positive B on the positive x—axis.

The eight sensitivity vector components for each of the vector mag-

netometer axes are listed in Table 5.2. These results , which were S

obtained by computing the appropriate gradients of could also be ob— 
-

tam ed by computing the appropriate gradients of the potentials in Table

5.1. Comparison of the two methods shows that a factor of i.z ,~/4it must

multiply each term in Table 5.2 to provide the proper units, and an i
additional factor of 1/2 must multiply the quadrupole terms to provide a

- 
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S 
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Fig. 5.1. The source—sink pictures for the dipole and quadrupole in the

- traceless tensor representation.
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I

TABLE 5.2

The sensitivity vector components for each term of a dipole—quadrupole I
model and each axis of a vector magnetometer. Each term should be multi— I
plied by ; the quadrupole terms should be multiplied by a fa ctor of ¼.

______ 

5~ Magnetometer B Magnetometer B
z 

Magnetometer .1

m -~~~~~ ~L - L  
-

y 5 5 3 5 -

r r r r S

m -~~~~~~ S~.!_~~~~~~~~~L T
Z 5 5 5 3r r r r -~

Q — 
9x 15x2y 

— 
15x2 z 

— 
3z - .

xx 7 5 7 5 7 sr r r r r r

Q 
l5xy 2 

— 
6x l5y3 15y2z 

— 
3z

yy 7 5 7 5 7 5 1~~~r r r r r r

l5x 2y 
— 

l5xy2 
— 

3x l5xyz
r r r r r

Q 
l5x2 z 

— 
6z l5xyz 15xz 2 3x

xz 7 5 7 7r r r r r

_1
Q 

l5xyz l5y 2 z 3z l5yz 2 3y
yz 7 7 5 7 5r r r r r

U
_____ - SSS S~~~~~~~_ S -- _~~~~~~ —~~~~~ 

,,S,
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- TABLE 5.3

j The sensitivity vector components for each axis of a vector magnetometer

5 locat ed at the points (1, 0 , 0) ,  (0 , 1, 0) and (0 , 0 , 1) obtained from

t the equations in Table 5.2.

I 

S

(1, 0 , 0) (0 , 1, 0) (0 , 0 , 1)

B B B B B B B B B
X 

_ _  
Z X~~ __ y z _ x y z

m 2 0 0 —1 0 0 —l 0 0

m 0 —l 0 0 2 0 0 — 1 0
- 

m 0 0 —l 0 0 —l 0 0 2

I ~xx 6 0 0 0 —6 0 0 0 —6

Q —6 0 0 0 6 0 0 0 —6
I 0 —6 0 —6 0 0 0 0 0

0 0 —6 0 0 0 —6 0 0

~yz 
0 0 0 0 0 —6 0 —6 0

I t S

t f  S

$
1

H ________________ 

S

— — —~~---— — --s- — -~~ ~
S S S ~~~ I t

S 5 .  - -
S -~~~ S S -. ~5 S S ~~~~~~~~~~~~~~ ~~ 

~~~
r4s S~ .

~~ 
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+

correct Taylor ’s expansion of B~. I
Table 5.3 lists the sensitivity vector components for vector magneto-

meters a unit distance from the source along the positive x , y, and z

axes. It is important to note from the table that Q~~~~ does not affec t I- 

8(1 , 0 , 0) ,  while Q and Q do not affect 8(0 , 1, 0) and 8(0 , 0, 1),

respectively. This is in contrast to the single dipole case discussed j

previously, in which the invertability of the field equations was depen— -~

dent only upon distance from the source. Table 5.3 can also be used to

clarify the orientation of the field from each quadrupole in Fig. 5.1.

Given the sensitivity vector equations in Table 5.2, the previous

numerical examples can be readily extended to include the quadrupole terms. I
However , the information matrix will then be (8 x 8), which can be manipu-

lated most efficiently with a digital computer and thus will not be

addressed further in tnis report.

S
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I 
S

VI. NONLINEAR PROBLEMS

I In all of the models discussed so far , the field equations were

I 
linear with respect to the source parameters. For this reason, the corn—

- 
putation of the sensitivity vectors was simple, and the results were

J consistent with the reciprocity theorem. If we had chosen the position S

of the dipole as a model parameter , the th ree components of r ’ in Eq. (2.3)

I would represent three non—linear terms in the field equation. We will now

proceed to extend our sensitivity vector techniques to include this case.

6.1 T~ylor ’s Series Linearization

In section II , we showed that  fo r linear sys tems the f ields and model

are related by an equation of the form

‘~ 5 ‘IS’
S 

- 
F = T L’ i  (6.1)

I ,~,where ‘
~
‘ is an n x 1 matrix , N is an m x 1 matrix , and T is m x n. In the

I non—linear case , we can wr ite S

I F = f ( M )  (6.2 )

I 
where f(M) represents a set of n non—linear functions of the m model para—

“5

meters. For example, each equation in f could be a different polynomial. 
S

If we choose a point In model space H° and determ ine the corr esponding

S point in field space F S

‘
~‘0 “ 5 “ 5

S F = f (M °) (6.3)

I ‘
~‘0

S If we restrict ourselves to the point M , we can write this as

I 
55’, ~‘5F° — T° M° (6.4)

We can then approximate f in a region about this point using a Taylor’s

- - 

__
~~~ S5. -~S5- S~~

a 
4

S 5 S S S S - 
S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- -

~ 

-

~ c
series expansion of each of the a equations in f. In matrix notation, S

S 
these can be written as

“5 I’,,’,

F— f(M)

— f (;~) + 
~~~~~ O~ 

(M~ — M )  + . . . (6.5) 
- 
j

The summation containing the partial derivative can be represented by a

matrix multiplication, so that the equation reduces to

“5 “5 “ , ~~ ,t, 5 -

F — F° + J(M°)(M — M°) + - . . (6.6)

‘
~
‘
0 

1
where J(M°) is the Jacobian matrix J(M) evaluated at M , with

S 

af1 1. • . -
~
w- L.

(6.7)

S 
The right hand side of Eq. (6.5) is a linear vector function of N which Ii
best approximates the non—linear function f(M) at the point M • This S

,t, “5~~~~
linear function describes the tangent hyperplane to the surface F = f(M)
~~~~~~

If we know F from a series of measurements and wish to determine the
-Si

corresponding M , it is necessary to solve Eq. ( 6 . 2 ) .  One way to do this )
is make a trial guess for H , say H°, and use Eq. (6.3) to compute F°. 1
The error in the fields can be written as

I
S “‘ “5 “o T.’~.4 A F — P — F  (6.8)

IA

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
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~ __ -sS -s -S~~S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —
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From Eq. (6.6), the error in the model is given by

“5 ~~ “5 “‘“ —1 “5
I t~N = H — M° = J(M°) AF (6.9)

I The choice of the point for computing the Taylor’s series can be changed

I to ~ N° + E~M and the process repeated iteratively to obtain the desired

accuracy. Of course, problems will occur if the Jacobian matrix is non—

J 
invertab].e or if the choice of M° leads to a phantom solution.

I 6.2 Sensitivity Vectors for Non—Linear Systems S

S If we compare Eq. (6.5) with Eq. (2.7) which defined sensitivity vec—

tors, we see that

E
m of

Fi = F~° + 

~~ 

~~~~~~~ (M~ — M~°) + . . . (6.10)

1

~ ii S 

F~° + 
j~ l ~~

i~j 
(M~ — M~°) (6.11)

( which by Eqs. 6.8 and 6.9 b:c:me:

I ~F1 S~ 1,,Z1 (6.12)

I Using Eq. (6.4) instead of F0, we could also have written Eq. (6.11) as

I F~ 
j~ l 

T~~° M~° + ~~T 
~~~ 

— ~~O ) (6.13)

It is apparent that the sensitivity vectors no longer correspond to the
1~~r rows of T, but instead to the rows of the Jacobian matrix.

The derivations of Section IV can be repeated to relate this to the

__________ S 
_____

I ~~~~~~~~~ -c~~~~ -a-’.~~ - - _______

I ,.

____ — -S —
~~~~~~~~~~~~ ~~

___ S S S 
-



I
information matrix. Multiplying Eq. 6.12 by and sunining oyer all mea— I
surements, we obtain

n a

S~ ~~~ = s~ ~~
T 
~~ (6.14) 1

ii i—l S

This can be solved for z~If

I n  ‘—1 ~
‘~~ 

(V’ ’~ “5 T ’ ~~~
•“

5 ‘~~~

= t L.~ s~ 
S1 ~ 

L~,S1 ~~ (6.15) 
5

\i=l / i—i -

Using Eq. (6.11), we can also write

n
S i~i° + ~—l 

~~ s~ (F~ 
— Fi

°) (6 .16)

1—1 T
St

This equation , which uses sensitivity vectors and the information matrix ,
S I
S 

represents the solution of the linearized version of our original non—

linear field equation.

Thus we see that even with non—linear systems, sensitivity vectors

have a straightforward mathematical interpretation. As in the linear case, S

S their utility lies in their simple physical interpretation in terms of

5 measurement sensitivity and in their suitability for graphical presenta—

I tion. It is important to recognize that in practice, sensitivity vectors

can be determined either analytically or numerically. If we have a

measurement that is a linear function of some variables and a non—linear

S function of several others, we can use the sensitivity vector approach to

S determine how the measurement is affected by each variable , regardless of

whether the variable has a linear or non—linear effect on the measurement.

However, we have just shown that the interpretation does depend somewhat

S 
S 5

~~~~~~~~~~~
., !,,-~~~$~~ ‘ø ~~~~~~~~~~~~~~

~—
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I thon whether the dependence is linear or non—linear. If the i measurement

[ is described by ~~ it follows from our original definitions that 
~Q!

I 
linear case, the sensitivity vector for this measurement is

+
S~ = V~ F~ (6.17)

I
and that

F
i 

= H (6.18)

( 
Because of the linear relationship, the change in the measurement result-

ing from a change in the model is simply

+ / linear case,\
= Si - ~i~’i ( + J (6 .19)

E \any AN /
I In the non—linear case, the sensitivity vectors is still given by Eq.

(6.17), but we have shown that Eq. (6.18) does not apply, and that (6.19)

S does apply as long as higher order terms can be neglected . Thus we can

- 
write

-* , / non—linear case,\ S S

= S~ - 

~~~ I + J (6.20)
small t~ii / S

1
This leads us to the important conclusion

[ If sensitivity vectors are interpreted as a measure
of how a measurement is affected by a small change
in the model, then linear and non—linear problems
can be treated identically. 

—

S [ 6.3 The Sensitivity of a Vector Magnetometer to Dipole Position
S 

As a non—linear example of sensitivity vectors, we will extend our

[ previous example and determine the sensitivity of a vector magnetometer

; to small changes in the location of the dipole. The sensitivity of B
~ 

to

___ ________ ______ _______ I
— — — - __

a 4
S*~~S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

S

__ -~~~~~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I
changes in dipole location can be determined by computing the gradient of I
B ( ) ,  given by Eq. (2.4), with respect to ‘ . The resulting sensitivity I
vector is

+ O B ( ) ~~ ,
S(B ) = , i + x _i__ . j t  (6.21)x Ox Oy 

i
This can be combined with the sensitivity vector for the dipole components,

to obtain

+ + + + {
3B (r) OB (r) OB (r) 

~. OB (r)
= 

~m ~ + 
~m ~ + 

~
5-
~x’ 

~~‘ ÷ 
~
y’ ~

(6.22)

= S~i + S2j  + S3I’ + S4j ’ I
The analytic expressions for these sensitivity vector components , as well ]
as the corresponding ones for B , are listed in Table 6.].. It is impor—

+ 5-.-

tant to note from Eq. (2.3) that the gradient of B with respect to r is 
-.

equal , with opposite sign, co the gradient with respect to ~~~
‘. Thus S

3 S
5~l

and S
4 also describe , if multipled by —1, the change in the measurement

produced by a small change in the magnetometer location.

The equations for S
3 and S4 indicate that the position sensitivity

at a particular location depends upon the dipole components. For this

reason, we must choose ~ for example of position sensitivity. As an ax—

S tension of Table 3.3 and Figure 3.2, Table 6.2 lists B , E},~ the corres-

ponding values of S3 and S4, and the quantity V34 for 2 dipole orientations ,

where

S V34 IS3
(B
~

)S
4

(B
1

) — S
3

(B
7

)S
4

(B
~)I 

(6.23)

Comparison of the — (1, 0) data for locations A and E shows that a vector

SS

~~~~~~~~~~~~
5T
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1 
4

I 
‘ I

TABLE 6.1

I The four components of the sensitivity vectors of B~ 
and B~ magnetometers

that describe how B and B are affected by small changes in the components

S 

and position of a dipole located at the origin.

S
1

(Bx) = -
~~
--

~~~ —k- (3x2 — r2)
x r

[ 
S2 (B

~
) -~~~~~ —

~~~~ ( 3xy) 

S

S3(B
~

) — 
~~~~~~ [

m (6x3 — 9xy2) + m (l2x 2y - 3y3)]

S 
S4 (B

~
) = 

~~~~~~~~ ~ [m (l2~c2)~ - 3y
3) + m (—3x3 + 12xy 2

)] :

1 OB 

S

is S1(B~ ) — —
~~~ (3xy ) 

S

S2(B~) — -
~f -

~~~
- (3y2 — r2)

I . y r

S3(B~ ) — ~~~~~~~~ - -
~~~~ [mx

(l2x2y — 3y3) + m~(_3x
O + l2xy 2)]

I S
4

(B~) — = 
~~ [

m (—3x 3 + 12xy 2) + m ( ~ 9x2y +  6y3)]
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I 
field measurement is twice as sensitive (V 34 18) to changes in dipole

position for measurements on the dipole axis than for equidistance mea—

I surements perpendicular to the dipole axis (V34 — 9). The position

sensitivity is even lower at point D (V 34 = 6.0). The relationship of

the position sensitivity vectors for B
~ 

and B~ measurements is shown

I graphically in Fig. 6.1.

while S3 and S4 follow directly from the slope of B vs x, B vs y,

( B vs x and B vs y signatures passing through each measurement point, the

r orientation of the position sensitivity vectors follows more directly from

I another type of plot. From Eq. (6.20), the change in field associated

[ 
with a change in position will be

S 

~
Bi = S j  . ~N~~ = S 3L~X ’ + S 4~y ’

- 
= V’ Bi(r) 

- tsr’ (6.24) J
‘ . 1  

u V B i
.
~~~

S 

Thus any displacement of the magnetometer parallel to a line of constant S

I B~ will produce no change in field. A corresponding displacement in the S

S source will also produce no change. By identifying the sensitivity vec— S

tor S
1 with the spatial gradient of B1, we see immediately that S~ must

be perpendicular to lines of constant B
1. Given that

~ I ~~~~ 

m (2x~ — 

~~c 
3i~~y

= B — 
~~~~~~ 

(6.25) 
1

it follows from the parametric substitution y = cix that the lines of con— 
S

atant B
~ 

must satisfy the equations

- 

/ 1 ~ m(2 - ci2 ) \h 13

$
f I~ 

x — 

(~~~

-

~~~~ ~~ 2 5/2) 
y — cix (6.26) S

S 
( l + c s ) -

__________ ____ S

_ _ _ _ _ _ _ _ _ _ _  ____ ___ /
—

_
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Fig. 6.1 The position sensitivity vectors for measurements of B
~ 

and B
y

at unit distance from a magnetic dipole located near the origin and par— 
S

S 

allel to the x—axia, The data are obtained from Table 6.2. 
5
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S 
while those for B~ must satisf y

S 

~ l/3S 

I l l  p m (3ct) \
5 x =1 — 2. 

5/2 y = ax (6 .27)
471 (l+ ci2) )

I The lines where the magnitude of B is constant satisfy S

I m P \ l /3/  ~ + ~2 \l/ 6

~ ~~~~~~~~~ , y = ax (6.28)

I \ I B I 471
) 

\ ( l ÷ c z2 )~5)

f One set of iso
~
B
~ 

lines is plotted in Figure 6.2 , along with the corres—
S 

ponding B sensitivity vectors for the points in Fig. 6.1. Clearly ,  the

I position sensitivity vector corresponds to the gradient vector at each

S point. Thus a complete set of iso—B curves , in the form of a contour

map , would be an efficient means of visually iden tif ying the magnetometer

5 location with either high or low position sensitivity. Furthermore , since

iso—B lines need not be drawn for fields lower than the ambient noise,
5 

this type of plot will also identif y the zones where B
~ 

can be measu red

S with adequate signal to noise ratio.

The iso—B curves are shown in Fig. 6.3 , with the obvious difference S

that B~ from an x dipole is zero on the coordinate axis while B~ 
is a

4 +
maximum there. Figure 6.4 shows the iso—IBI curve, which can be seen to

I bound the curves for B and B . This figure shows that an instrument thatx y

- - 
measures J B J directly would have a much simpler position response than one

1 measuring only a single component. It is also important to note that by

I the reciprocity theorem each of these iso—field curves can also be thought

of as an iso—sensitivity curve for a magnetometer. This concludes the ana—

[ iysis of non—linear sensitivity vectors. Because of their straightforward

interpretation, the iso—field plots and sensitivity vectors may be especially S S

useful for studying the position sensitivity of quadrupole models. 
—
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VII.  CONCLU SIONS

[ In this report, the mathematical basis of sensitivity vectors has

been developed, with specific application to the measurement and modelling

I of magnetic fields. In the course of analyzing several examples, the 
S

following questions were answered : S

1. Given two magnetic field measurements, what criteria must
a be satisfied to allow determination of the two dipole corn— 5

Is 
ponents consistent with that field?

r 2. For a measurement of the vector magnetic field at a fixed

I distance from a dipole source, what is the optimum magne— S

tometer position? S

i’ 3. How do various configurations of single axis magnetometers compare
L in terms of their ability to determine model parameters ,

and how can this be assessed quantitatively?

f 4. How can the presence of noise be included in such an
analysis?

5. What Is the relationship of the sensitivity vector concept S
to the reciprocity theorem of electromagnetic fields?

1 6. How can sensitivity vectors be used to stud y multipole
S models?

r 7. What is the interpretation of a sensitivity vector for a S

1 non—linear model?

8. What is the position dependence of a vector magnetometer ,(‘5 and how does it vary with position?

9. Where can a magnetometer be placed relative to the model s S
S to insure adequate signal to noise ratio?

Based on the ability of the sensitivity vector approach to answer these

questions quantitatively, it appears that this type of analysis may be
S 

- valuable for optimizing magnetometer array configurations. It is re-

assuring that the results obtained in this report are consistent with both

[ a modeller ’s intuition and more abstract mathematical analysis, particular—

ly in that this method can be readily ex tended to more complicated systems S

II 
S S 
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where intuition fails.

Two specific recommendations follow from this : J
1) Interactive computer code should be developed to allow

accura te and rapid analysis of magnetometer sensitivity j
- and comparision of magnetometer configurations.

2) The sensitivity vector analysis should be extended to I
include the magnetic field from electric current dis—
tributions, and possibly the electric f ield from these
currents. 

I
In conclusion , sensitivity vectors are a potentially valuable tech—

nique that can be readily applied to the measuring and modelling of mag—

netic fields. Its greatest benefit over other techniques is that it

allows simple, graphical display of magnetometer sensitivity. 11
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VIII. FIGURE CAPTIONS S

Pag~,

Fig. 3.1 The sensitivity vectors for measurements of B
~

I at unit distance from a fixed magnetic dipole.
The coordinates of the points are listed in

I 
Table 3.1 9

- 
Fig. 3.2 The sensitivity vectors for measurements of Bx

I and B at unit distance from a fixed magnetic
I dipole. The coordinates of the points are

listed in Table 3.2 13

I Fig. 4.1 Four locations where the B
~ 
sensitivity vector

is perpendicular to that at one particular lo—

[ cation and has the same magnitude 22

Fig. 4.2 A row of B or B magnetometers near a
(5 magnetic dipole 24

Fig. 4.3 The quantities 5
x and S plotted as a function

I of x for the Bx magnetometers in Fig. 4.2 and

a vector plot of S for the sane data 28

I Fig. 4.4 The quantities S,~ and S
y 
plotted as a function S

of x for the B magnetometers in Fig. 4.2 and

~ ( a vector plot of S for the same data 29 5

Fig. 4.5 The quantity V plotted as a function of mean

( distance r from the data in Table 4.4. The S

lines connect sets of measurements using the 
S

same type and number of magnetometers 32

I Fig. 4.6 The quantity V plotted versus y for a vector S
magnetometer on the y axis computed with and 

S

without the noise correction 35

Fig. 5.1 The source—sink pictures for the dipole and
quadrupole in the traceleas tensor represen—
tation 46

Fig. 6.1 The position sensitivity vectors for measure—
ments of B and B at unit distance from a

‘C y
magnetic dipole located near the origin and
parallel to the x—axis. The data are obtained
from Table 6.2. . . .  59 5
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Fig. 6.2 The lines where lB produced by m is a

constant 

Fig. 6.3 The lines where ~B produced by a is a
I constant 

x 62

Fig. 6.4 The line where IBI from m~ is a constant 63
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IX. LIST OF TABLES

Table P~g~

I 
3.1 Sensitivity vectors at several points equi-

distant from a dipole. The data are plotted
in Fig. 3.1 8

I 3.2 The quantity v = I s S~ 
— S S computed

X
1 2 ~

‘l 2
for pairs of Bx measurement points in the 5

I first and second quadrants. 12 5

3.3 The coordinates and sensitivity vector

I components for B and B measurements in

the first quadrant. The data are plotted in S
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1 4.2 Sensitivity vectors and information matrices for
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4.3 Sensitivity vectors and information matrices for
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S
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I 5.1 The traceless tensor multiple expansion for a
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I 5.2 The sensitivity vector components for each term
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51 vector magnetometer 47

1 5.3 The sensitivity vector components for each axis S
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S
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~ I 
from the equations in Table 5.2 48

6.1 The four components of the sensitivity vectors S

of B
~ 

and B~ magnetometers that describe how
B~ and B~ are affected by small changes in the 

S

p components and position of a dipole located at S

( I the origin. . . . . . . . 56 
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15 X. LIST OF SYMBOLS

Symbols

I
A Magnetic vector potential
+

E 
B ~fagnetic induction

B~ Magnetic induction from I~, in pickup coil

[ E Electric field

1
F, F Scalar field measurement matrix

I 
i 

“I

f Non—linear functions of M

I I Test current S

I P
S 

I Identity matrix

i, J ,  k, Cartesian unit vectors

I J Jacobian matrix S

S 

14, TMi Model matrix S

~
i, m~ Magnetic dipole S

m x 1 Dimension of N
- 

~S~~~S S

n x 1 Dimension of F
S 1t L 1N 11 Noise sensitivity vector

I ~~ Q~ Quadrupole Tensor

R Information matrix

I ~, P Field and Source point distance vectors 5

S 

~~~~
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~~~~
, s~ Sensitivity vector

[ T, Tij Transfer matrix

V Model space volume
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List of Symbols (cont’d)

I l
S Symbols

Noise weighting function

Iso—field plot parameter

IS Kronecker Delta
ii I )

$ Magnetic flux

$~
, 4~~ Multipole unit potential

Magnetic permeability of free space

V Gradient with respect to

V t Gradient with respect to r ’ -~~

S 

V
14 

Gradient with respect to 14
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